34 research outputs found

    Optimal antiplatelet strategy after transcatheter aortic valve implantation: a meta-analysis

    Get PDF
    Objective International guidelines recommend the use of dual antiplatelet therapy (DAPT) after transcatheter aortic valve implantation (TAVI). The recommended duration of DAPT varies between guidelines. In this two-part study, we (1) performed a structured survey of 45 TAVI centres from around the world to determine if there is consensus among clinicians regarding antiplatelet therapy after TAVI; and then (2) performed a systematic review of all suitable studies (randomised controlled trials (RCTs) and registries) to determine if aspirin monotherapy can be used instead of DAPT. Methods A structured electronic survey regarding antiplatelet use after TAVI was completed by 45 TAVI centres across Europe, Australasia and the USA. A systematic review of TAVI RCTs and registries was then performed comparing DAPT duration and incidence of stroke, bleeding and death. A variance weighted least squared metaregression was then performed to determine the relationship of antiplatelet therapy and adverse events. Results 82.2% of centres routinely used DAPT after TAVI. Median duration was 3 months. 13.3% based their practice on guidelines. 11 781 patients (26 studies) were eligible for the metaregression. There was no benefit of DAPT over aspirin monotherapy for stroke (P=0.49), death (P=0.72) or bleeding (P=0.91). Discussion Aspirin monotherapy appears to be as safe and effective as DAPT after TAVI

    Determining the Predominant Lesion in Patients With Severe Aortic Stenosis and Coronary Stenoses: A Multicenter Study Using Intracoronary Pressure and Flow

    Get PDF
    Background: Patients with severe aortic stenosis (AS) often have coronary artery disease. Both the aortic valve and the coronary disease influence the blood flow to the myocardium and its ability to respond to stress; leading to exertional symptoms. In this study, we aim to quantify the effect of severe AS on the coronary microcirculation and determine if this is influenced by any concomitant coronary disease. We then compare this to the effect of coronary stenoses on the coronary microcirculation. Methods: Group 1: 55 patients with severe AS and intermediate coronary stenoses treated with transcatheter aortic valve implantation (TAVI) were included. Group 2: 85 patients with intermediate coronary stenoses and no AS treated with percutaneous coronary intervention were included. Coronary pressure and flow were measured at rest and during hyperemia in both groups, before and after TAVI (group 1) and before and after percutaneous coronary intervention (group 2). Results: Microvascular resistance over the wave-free period of diastole increased significantly post-TAVI (pre-TAVI, 2.71±1.4 mm Hg·cm·s−1 versus post-TAVI 3.04±1.6 mm Hg·cm·s−1 [P=0.03]). Microvascular reserve over the wave-free period of diastole significantly improved post-TAVI (pre-TAVI 1.88±1.0 versus post-TAVI 2.09±0.8 [P=0.003]); this was independent of the severity of the underlying coronary stenosis. The change in microvascular resistance post-TAVI was equivalent to that produced by stenting a coronary lesion with an instantaneous wave-free ratio of ≤0.74. Conclusions: TAVI improves microcirculatory function regardless of the severity of underlying coronary disease. TAVI for severe AS produces a coronary hemodynamic improvement equivalent to the hemodynamic benefit of stenting coronary stenoses with instantaneous wave-free ratio values <0.74. Future trials of physiology-guided revascularization in severe AS may consider using this value to guide treatment of concomitant coronary artery disease

    Automated left ventricular dimension assessment using artificial intelligence developed and validated by a UK-wide collaborative

    Get PDF
    Background: requires training and validation to standards expected of humans. We developed an online platform and established the Unity Collaborative to build a dataset of expertise from 17 hospitals for training, validation, and standardization of such techniques. Methods: The training dataset consisted of 2056 individual frames drawn at random from 1265 parasternal long-axis video-loops of patients undergoing clinical echocardiography in 2015 to 2016. Nine experts labeled these images using our online platform. From this, we trained a convolutional neural network to identify keypoints. Subsequently, 13 experts labeled a validation dataset of the end-systolic and end-diastolic frame from 100 new video-loops, twice each. The 26-opinion consensus was used as the reference standard. The primary outcome was precision SD, the SD of the differences between AI measurement and expert consensus. Results: In the validation dataset, the AI’s precision SD for left ventricular internal dimension was 3.5 mm. For context, precision SD of individual expert measurements against the expert consensus was 4.4 mm. Intraclass correlation coefficient between AI and expert consensus was 0.926 (95% CI, 0.904–0.944), compared with 0.817 (0.778–0.954) between individual experts and expert consensus. For interventricular septum thickness, precision SD was 1.8 mm for AI (intraclass correlation coefficient, 0.809; 0.729–0.967), versus 2.0 mm for individuals (intraclass correlation coefficient, 0.641; 0.568–0.716). For posterior wall thickness, precision SD was 1.4 mm for AI (intraclass correlation coefficient, 0.535 [95% CI, 0.379–0.661]), versus 2.2 mm for individuals (0.366 [0.288–0.462]). We present all images and annotations. This highlights challenging cases, including poor image quality and tapered ventricles. Conclusions: Experts at multiple institutions successfully cooperated to build a collaborative AI. This performed as well as individual experts. Future echocardiographic AI research should use a consensus of experts as a reference. Our collaborative welcomes new partners who share our commitment to publish all methods, code, annotations, and results openly

    Coronary Hemodynamics in Patients With Severe Aortic Stenosis and Coronary Artery Disease Undergoing Transcatheter Aortic Valve Replacement: Implications for Clinical Indices of Coronary Stenosis Severity.

    Get PDF
    In this study, a systematic analysis was conducted of phasic intracoronary pressure and flow velocity in patients with severe aortic stenosis (AS) and coronary artery disease, undergoing transcatheter aortic valve replacement (TAVR), to determine how AS affects: 1) phasic coronary flow; 2) hyperemic coronary flow; and 3) the most common clinically used indices of coronary stenosis severity, instantaneous wave-free ratio and fractional flow reserve. A significant proportion of patients with severe aortic stenosis (AS) have concomitant coronary artery disease. The effect of the valve on coronary pressure, flow, and the established invasive clinical indices of stenosis severity have not been studied. Twenty-eight patients (30 lesions, 50.0% men, mean age 82.1 ± 6.5 years) with severe AS and coronary artery disease were included. Intracoronary pressure and flow assessments were performed at rest and during hyperemia immediately before and after TAVR. Flow during the wave-free period of diastole did not change post-TAVR (29.78 ± 14.9 cm/s vs. 30.81 ± 19.6 cm/s; p = 0.64). Whole-cycle hyperemic flow increased significantly post-TAVR (33.44 ± 13.4 cm/s pre-TAVR vs. 40.33 ± 17.4 cm/s post-TAVR; p = 0.006); this was secondary to significant increases in systolic hyperemic flow post-TAVR (27.67 ± 12.1 cm/s pre-TAVR vs. 34.15 ± 17.5 cm/s post-TAVR; p = 0.02). Instantaneous wave-free ratio values did not change post-TAVR (0.88 ± 0.09 pre-TAVR vs. 0.88 ± 0.09 post-TAVR; p = 0.73), whereas fractional flow reserve decreased significantly post-TAVR (0.87 ± 0.08 pre-TAVR vs. 0.85 ± 0.09 post-TAVR; p = 0.001). Systolic and hyperemic coronary flow increased significantly post-TAVR; consequently, hyperemic indices that include systole underestimated coronary stenosis severity in patients with severe AS. Flow during the wave-free period of diastole did not change post-TAVR, suggesting that indices calculated during this period are not vulnerable to the confounding effect of the stenotic aortic valve

    Dobutamine stress echocardiography ischemia as a predictor of the placebo-controlled efficacy of percutaneous coronary intervention in stable coronary artery disease: the stress echo-stratified analysis of ORBITA

    Get PDF
    BACKGROUND: Dobutamine stress echocardiography is widely used to test for ischemia in patients with stable coronary artery disease. In this analysis, we studied the ability of the prerandomization stress echocardiography score to predict the placebo-controlled efficacy of percutaneous coronary intervention (PCI) within the ORBITA trial (Objective Randomised Blinded Investigation With Optimal Medical Therapy of Angioplasty in Stable Angina).METHODS: One hundred eighty-three patients underwent dobutamine stress echocardiography before randomization. The stress echocardiography score is broadly the number of segments abnormal at peak stress, with akinetic segments counting double and dyskinetic segments counting triple. The ability of prerandomization stress echocardiography to predict the placebo-controlled effect of PCI on response variables was tested by using regression modeling.RESULTS: At prerandomization, the stress echocardiography score was 1.56±1.77 in the PCI arm (n=98) and 1.61±1.73 in the placebo arm (n=85). There was a detectable interaction between prerandomization stress echocardiography score and the effect of PCI on angina frequency score with a larger placebo-controlled effect in patients with the highest stress echocardiography score (Pinteraction=0.031). With our sample size, we were unable to detect an interaction between stress echocardiography score and any other patient-reported response variables: freedom from angina (Pinteraction=0.116), physical limitation (Pinteraction=0.461), quality of life (Pinteraction=0.689), EuroQOL 5 quality-of-life score (Pinteraction=0.789), or between stress echocardiography score and physician-assessed Canadian Cardiovascular Society angina class (Pinteraction=0.693), and treadmill exercise time (Pinteraction=0.426).CONCLUSIONS: The degree of ischemia assessed by dobutamine stress echocardiography predicts the placebo-controlled efficacy of PCI on patient-reported angina frequency. The greater the downstream stress echocardiography abnormality caused by a stenosis, the greater the reduction in symptoms from PCI

    Placebo-controlled efficacy of percutaneous coronary intervention for focal and diffuse patterns of stable coronary artery disease

    Get PDF
    Background: Physiological assessment with pressure wire pullback can characterize coronary artery disease (CAD) with a focal or diffuse pattern. However, the clinical relevance of this distinction is unknown. We use data from the ORBITA trial (Objective Randomised Blinded Investigation With Optimal Medical Therapy of Angioplasty in Stable Angina) to test if the pattern of CAD predicts the placebo-controlled efficacy of percutaneous coronary intervention (PCI) on stress echocardiography ischemia and symptom end points. Methods: One hundred sixty-four patients in ORBITA underwent blinded instantaneous wave-free ratio (iFR) pullback assessment before randomization. Focal disease was defined as a ≥0.03 iFR unit drop within 15 mm, rather than over a longer distance. Analyses were performed using regression modeling. Results: In the PCI arm (n=85), 48 were focal and 37 were diffuse. In the placebo arm (n=79), 35 were focal and 44 were diffuse. Focal stenoses were associated with significantly lower fractional flow reserve (FFR) and iFR values than diffusely diseased vessels (mean FFR and iFR, focal 0.60±0.15 and 0.65±0.24, diffuse 0.78±0.10 and 0.88±0.08, respectively, P<0.0001). With adjustment for this difference, PCI for focal stenoses resulted in significantly greater reduction in stress echo ischemia than PCI for diffuse disease (P<0.05). The effect of PCI on between-arm pre-randomization adjusted exercise time was 9.32 seconds (95% CI, −17.1 to 35.7 seconds; P=0.487). When stratified for pattern of disease, there was no detectable difference between focal and diffuse CAD (Pinteraction=0.700). PCI improved Seattle Angina Questionnaire angina frequency score and freedom from angina more than placebo (P=0.034; P=0.0035). However, there was no evidence of interaction between the physiological pattern of CAD and these effects (Pinteraction=0.436; Pinteraction=0.908). Conclusions: PCI achieved significantly greater reduction of stress echocardiography ischemia in focal compared with diffuse CAD. However, for symptom end points, no such difference was observed

    Fractional Flow Reserve and Instantaneous Wave-Free Ratio as Predictors of the Placebo-Controlled Response to Percutaneous Coronary Intervention in Stable Single-Vessel Coronary Artery Disease: Physiology-Stratified Analysis of ORBITA

    Get PDF
    BACKGROUND: There are no data on how fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) are associated with the placebo-controlled efficacy of percutaneous coronary intervention (PCI) in stable single-vessel coronary artery disease. METHODS: We report the association between prerandomization invasive physiology within ORBITA (Objective Randomised Blinded Investigation With Optimal Medical Therapy of Angioplasty in Stable Angina), a placebo-controlled trial of patients who have stable angina with angiographically severe single-vessel coronary disease clinically eligible for PCI. Patients underwent prerandomization research FFR and iFR assessment. The operator was blinded to these values. Assessment of response variables, treadmill exercise time, stress echocardiography score, symptom frequency, and angina severity were performed at prerandomization and blinded follow-up. Effects were calculated by analysis of covariance. The ability of FFR and iFR to predict placebo-controlled changes in response variables was tested by using regression modeling. RESULTS: Invasive physiology data were available in 196 patients (103 PCI and 93 placebo). At prerandomization, the majority had Canadian Cardiovascular Society class II or III symptoms (150/196, 76.5%). Mean FFR and iFR were 0.69±0.16 and 0.76±0.22, respectively; 97% had ≥1 positive ischemia tests. The estimated effect of PCI on between-arm prerandomization-adjusted total exercise time was 20.7 s (95% confidence interval [CI], -4.0 to 45.5; P=0.100) with no interaction of FFR (Pinteraction=0.318) or iFR (Pinteraction=0.523). PCI improved stress echocardiography score more than placebo (1.07 segment units; 95% CI, 0.70-1.44; P<0.00001). The placebo-controlled effect of PCI on stress echocardiography score increased progressively with decreasing FFR (Pinteraction<0.00001) and decreasing iFR (Pinteraction<0.00001). PCI did not improve angina frequency score significantly more than placebo (odds ratio, 1.64; 95% CI, 0.96-2.80; P=0.072) with no detectable evidence of interaction with FFR (Pinteraction=0.849) or iFR (Pinteraction=0.783). However, PCI resulted in more patient-reported freedom from angina than placebo (49.5% versus 31.5%; odds ratio, 2.47; 95% CI, 1.30-4.72; P=0.006) but neither FFR (Pinteraction=0.693) nor iFR (Pinteraction=0.761) modified this effect. CONCLUSIONS: In patients with stable angina and severe single-vessel disease, the blinded effect of PCI was more clearly seen by stress echocardiography score and freedom from angina than change in treadmill exercise time. Moreover, the lower the FFR or iFR, the greater the magnitude of stress echocardiographic improvement caused by PCI

    Real world hospital costs following stress echocardiography in the UK: a costing study from the EVAREST/BSE-NSTEP multi-centre study

    Get PDF
    Background: Stress echocardiography is widely used to detect coronary artery disease, but little evidence on downstream hospital costs in real-world practice is available. We examined how stress echocardiography accuracy and downstream hospital costs vary across NHS hospitals and identified key factors that affect costs to help inform future clinical planning and guidelines. Methods: Data on 7636 patients recruited from 31 NHS hospitals within the UK between 2014 and 2020 as part of EVAREST/BSE-NSTEP clinical study, were used. Data included all diagnostic tests, procedures, and hospital admissions for 12 months after a stress echocardiogram and were costed using the NHS national unit costs. A decision tree was built to illustrate the clinical pathway and estimate average downstream hospital costs. Multi-level regression analysis was performed to identify variation in accuracy and costs at both patient, procedural, and hospital level. Linear regression and extrapolation were used to estimate annual hospital cost-savings associated with increasing predictive accuracy at hospital and national level. Results: Stress echocardiography accuracy varied with patient, hospital and operator characteristics. Hypertension, presence of wall motion abnormalities and higher number of hospital cardiology outpatient attendances annually reduced accuracy, adjusted odds ratio of 0.78 (95% CI 0.65 to 0.93), 0.27 (95% CI 0.15 to 0.48), 0.99 (95% CI 0.98 to 0.99) respectively, whereas a prior myocardial infarction, angiotensin receptor blocker medication, and greater operator experience increased accuracy, adjusted odds ratio of 1.77 (95% CI 1.34 to 2.33), 1.64 (95% CI 1.22 to 2.22), and 1.06 (95% CI 1.02 to 1.09) respectively. Average downstream costs were £646 per patient (SD 1796) with significant variation across hospitals. The average downstream costs between the 31 hospitals varied from £384–1730 per patient. False positive and false negative tests were associated with average downstream costs of £1446 (SD £601) and £4192 (SD 3332) respectively, driven by increased non-elective hospital admissions, adjusted odds ratio 2.48 (95% CI 1.08 to 5.66), 21.06 (95% CI 10.41 to 42.59) respectively. We estimated that an increase in accuracy by 1 percentage point could save the NHS in the UK £3.2 million annually. Conclusion: This study provides real-world evidence of downstream costs associated with stress echocardiography practice in the UK and estimates how improvements in accuracy could impact healthcare expenditure in the NHS. A real-world downstream costing approach could be adopted more widely in evaluation of imaging tests and interventions to reflect actual value for money and support realistic planning

    Primary immunodeficiencies associated with eosinophilia

    Full text link
    corecore